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stressed conditions. Therefore, in spite of the fact that the method of Neumann (3) strict- 
ly mathematically always converges, its numerical application with present computation- 
al possibilities in the general case of loading is limited by condition (18). Therefore for 

fi = (lOO-1000)/z we shall have d < (20-40)/z . This class of shells presents a practical 
interest. 

The author expresses his gratitude to V. V. Novozhilov for the formulation of the prob- 

lem. 
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In recent years the attention of a large number of investigators has been drawn to the 
study of media having complex structure. The simplest of these is the Cosserat medium 
[l, 21. Mindlin’s medium with microstructure [3] is more complex. An extraordinary 
complexity is inherent in the multipolar mechanics developed by Green and Rivlin [4]. 

The essential peculiarity of all these theories is reconsideration of the concept of a 
point. If in classical continuum mechanics each point possesses only the degrees of free- 
dom of translational displacement, in the Cosserat theory the degrees of freedom of a 
rigid body are ascribed to it. In the theory of a medium with microstructure each point 
possesses the degrees of freedom of a body with homogeneous strain, i. e. twelve degrees 
of freedom. In multipolar mechanics the mechanical state of each point is defined by 
n kinematical parameters, where n must be finite but may be as large as desired. A new 

model of a medium of similar type will be constructed below. 
We shall postulate the presence of some load-carrying medium and shall assume that 



its behavior is described by the equations of the classical theory of elasticity 

(J..+~)Wu+~du--pu”fK=Ct t 1.1) 

where p is the densiq of the foa&carrying medium, h and p are the elastic modufi of 
the medium, u is the displacement vector of the points of the load-carrying medium, 
K is the external body force (per unit volume), Connected with each point of the load- 
ca~lng medium, we shall assume &at there is an infinite set of non~nteracting, isotropic 
oscillators with continuously distributed natural frequencies, The equation of motion of 

a typical oscillator with natural frequency a has the form 

ml?)v,.*tcia)[1f%~~)7(~~-U)?e (4.2) 

where veis the vector of absolute displacement of the mass of the oscillator and Q, is 
the external force applied to it. The quantity na (CC) do. is equal to the total mass per 
unit volume of all the oscillators with natural frequencies lying in the range (a, a -+- i&x). 
It follows from this that the total mass of all oscillators attached to the particles of a 
unit volume is 03 
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m (2) d? (1.3) 
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Further, in Eq, (X.2), the quantity e (3) characterizes the statical stiffness of the sus- 
pension of the oscillator, We have by the definition of natural frequency 

c’ (a) = a~?% (a) (1.4) 

The term with R, (3 i &) is introduced into Eq. {I. ‘2) to account for energy ~lssipation 

in the suspension of the oscllators, It will be assumed that R, (8 / at) is an odd function 
of the time derivative operator. It will become clear below that consideration of the 
darn~lng of oscillators is absolutely essential if physically reasonable results are to be 
obtained, In order ro complete the system of equations (1.1) and (1. Z), it is necessary 

to take into account the action of the suspensian of the oscillators on the load-carrying 

medium. The force per unit volume corresponding to this effect is 

F = r c (a) 14 -i- R, C%Yl V,-Xi)& (1.% 
. 
0 

This shoutd come into Eq, (L 1) as a body force, Finally, also taking account of the 
equation of motion of the oscillators, we have 

co 

(~+P)~~u+~Au-pu”- rn(q~~*'d~JrK+Q;=O s 0 

The vector Q which occurs here is equal to the external force applied to all the oscil- 
lators in a unit volume 

Q==f%ds ft.?) 
0 

The boundary conditions for the medium which has been introduced are formulated 
in the same way as in the classical theory of elasticity, 

$2, Let us consider a sfender bar having a free lateral surface, ~ssnrn~~g that a gene- 
ralized uniaxial stste of stress is present in the bar, we obtain the equations of motion 
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for this special case by the usual methods of the theory of elasticity 
00 

Eu” _ pu” - 
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m (ct) vcr” dz + K + Q = 0 

0 

m (a) vu” + c (a) 
[ I+ R, y& 1 (0, - u) = Q, 

where E is the Young’s modulus of the load-carrying medium, u is the displacement 
of the medium in the direction of the axis of the bar, etc. ; the prime denotes diffrenti- 
ation with respect to the coordinate x measured along the axis of the bar. 

Equations (2.1). without consideration of the body forces A! and Q, or of the resisting 
forces was first obtained by Slepian [S]. In that paper the author examines the problem 
of propagation of stress waves. 

In the present work, the problem of a bar of finite length is investigated under the 
action of either a harmonic force or an impulsive force applied to one end. 

3. Let one end of a bar of length I be free and the other be loaded by a harmonic 
load of frequency o and unit amplitude. In this case, the boundary conditions have the 
form x = 0, u* = 0; x= 1, ~~1 = &t 

(3.1) 
It is easy to find the steady-state solution of Eqs. (2.1) for K = Q, = 0 subject to 

boundary conditions (3.1). In particular, the values of the accelerations of the points of 
the load-carrying medium and of the oscillarots turn out to be as follows: 

u.'=@(co, 2) 2wt, va-= y, tw, x) 2ot (3.2) 
where the transfer functions Q, and Y, may be expressed as 

0% cos hx 
Y,.(o,~)=@(o,~) l-g&-) [ 1 

-1 
a to* x) = EL sin JJ, ’ (3.3) 

and the following quantities have been introduced : 

CC - &/(I + icp,) 1 ’ ‘p, = - iR, (io) (3.4) 

va being real. 
The variation of the amplitude of vibration along the bar is of chief interest. The 

squares of the amplitudes of vibration of the load-carrying medium ( a2 ) and of the 

oscillators ( bor)2 have the expressions 
-2 

a2=IO((o, z,p, bo,a=aa 1- 
09 

a2(1 + 9,) I 
(3.5) 

Separating the real and imaginary parts of h 

h=p-iq (3.6) 

we represent a2 by the following formula: 

&A.?- ch 2rlx + cos 211~ 
E= 1 h I2 ch 2$- cos 2~1 (3.7) 

Examination of the numerator of this expression leads to the conclusion that the para- 
meter 11 determines the rate of decay of the vibrations with distance from their source, 
and the parameter lo determines how many waves of vibration there are along the bar. 
Investigation of the denominator shows that the height of the resonant peaks are greater 
the smaller 11 is. The width of the peaks on the amplitude-frequency diagram are 
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determined by the parameter p. 
We shall show that the degree of decay of vibrations n 

damping of the oscillators and remains constant even for 
does not depend strongly on the 

vanishingly small damping. 
For this purpose it is sufficient to show that the expression for A3 in Eq. (3.4) remains 

complex even for zero value damping cpo: --, 0. 

To simplify matters, we shall assume that the damping properties of the suspensions 
of all the oscillators are the same, i.e. ‘p, = r+~ does not depend on the parameter a, 
but can depend on the frequency of the disturbance. But then in order that the free vibra- 

tions of each oescillator decay when the load-carrying medium does not move, it is 
necessary that ‘p > 0 for II) > 0 . By virtue of the assumption that R and cp are odd 
functions it follows that for negative o , cp will also be negative. 

We introduce the complex quantity z by the formula 

Z = 0 (1 + i,)-“2 (3.8) 

We take the branch of the radical in (3. 8) for which the radical is + 1 for v L- 0. 

It turns out that for cp # 0, the imaginary part of z is negative for all values of frequency 
o except zero. Therefore, as cp + 0 the complex variable z approaches a real value 
from the lower half of the complex plane z. 

Using the quantity (3.8) which has been introduced, we represent (3.4) in the following 
form : 

(3.9) 

In the Cauchy integral which occurs here, z is always located in the lower half plane. 

As q -+ 0 the complex quantity z approaches points of the real axis along which the 
integral in (3.9) is taken, In accordance with the Sokhotskii-Plemelj formulas 163 we 

obtain the following limit of the expression (3.9) as r~ - 0: 

The integral in this equation is to be interpreted as a principal value. The imaginary 
part of (3.10) is nonzero. Therefore, the measure of spatial damping of the oscillations 
n has a finite value even if the damping of the oscillators is taken as small as desired. 

The quantity n is determined by the variation of stiffness of the suspensions of the oscil- 
lators with their natural frequencies. This effect is inherent only in models which take 
account of the complex structure of the medium, i.e. the presence of suspended oscilla- 
tors. It is quite unnatural for models of the medium in which a finite stiffness of the 

suspensions is not considered. From a physical point of view, it can be explained by the 
fact that the oscillators play the role of dynamic vibration absorbers. 

We note that consideration of the damping of the oscillators is necessary for determi- 
nation of their amplitudes of vibration. The second of Eqs. (3.5) indicates this because 
in the general case it becomes meaningless for ‘P = 0. 

4. We shall illustrate the conclusions of the last section by a concrete example. Let 

m (a) = A (f3' + a")-l (4.1) 

where .4 and 0 are positive parameters. 
Substitution of the expression (4.1) into (1.3) and calculation of the integral results in 
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m = An (2fi)-l (4.2) 

This equation permits us to eliminate the parameter A from the succeeding equations 
by expressing it in terms of m and fl. We now substitute (4.1) into (1.4) and then into 

(3.4). As a result, we obtain o2 

(4.3) 

Calculating the integral which appears in (4.3) by contour integration, we arrive at 
the following result : 

If 
iw 

BJffq-q 
(LG) 

The form of this equation constitutes complete confirmation of the reasoning in the 
preceding section. Moreover, it indicates the slight dependence of h on ‘p for reason- 

able, and therefore not very large, values of CF. 
The example presented is also remarkable for the following reason. If in Eq. (4.4) 

we set p z 0 and T == 0,we obtain 

This is exactly the same structure as in the expression for the square of the wave num- 
ber for the problem of longitudinal vibrations of a bar made of a Kelvin-Voigt material 
[7], i.e. for the problem of a bar with finite damping. Thus, the medium which is being 

studied here has the following interesting peculiarity. Despite the fact that it is “con- 
structed” of elements with low dissipation (high Q ) - an ideally elastic load-carrying 
medium and slightly damped oscillators - it behaves outwardly just like a medium with 

considerable damping but with simple structure. 

At first glance this conclusion seems paradoxical. However, careful investigation 
shows that considerable energy is actually dissipated even for small damping of the 
oscillators. This occurs because of the large amplitudes of the oscillators which are at 
resonance. 

5. Let us now study a different loading regime. Let a unit impulse be applied at the 
section x = 1. The boundary conditions in this case have the form 

x = 0, u’ = 0, x = I, EU’ = 6 (t) (5.1) 

where 6(t) is the Dirac delta function. 
To simplify the solution of the problem we assume that body forces are absent, Ii = 

= Q, = 0. Moreover, we shall not take into accout any damping of the oscillators. 
Considering these simplifications,and performing a Laplace transformation for zero ini- 

tial conditions, we obtain from Eqs. (2.1) and (5.1) 
co 

l?uU - pp2u - 
s 

m (CL) p‘%~~ da = 0 (5.3)‘ 

0 

m (a)p’r, + c (a) (0, - u) = 0 

2 = 0, u’ = 0, I = 1, Eu’ = I (5.3) 

where p is the variable of Laplace transformation and the same notation is used for a 
function and its transform. 

The solution of the boundary value problem (5. a), (5.3) is easy to find. In particular, 
the transformed accelerations of points of the load-carrying medium and of the oscilla- 
tors are : 
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p= ch yx 
U=PaU=m I 

v, = p%, = u (1 + fi’ (5.4) 

(5.5) 

The inverse transforms for the accelerations U and V, are found in the general case 

by the Mellin inversion formulas 

S ept pa ch yx 1 

Ey sh yl dp, Vla=m S ePt p2 ch TX dp 

ET ah ‘rl (1 + pa / a”) 
(5.6) 

L 
L 

The process of computing these integrals depends greatly on the actual form of the 
function y (p). In the following section, this calculation will be carried out for the sim- 

plest case. 

6, Let the function m (a) be given by Eq. (4.1). Substituting (4.1) into (1.4) and then 

into (5.5), we obtain the following expression for Y (P): 

(6.1) 

Inasmuch as the functions (5.4) are meromorphic functions of Y and are therefore, by 

virtue of Eq. (6. l), single-valued functions of p, the inversion integrals (5.6) can be 
calculated in this case by using a series expansion in the form of the sum of residues of 
the integrands in Eqs. (5.6). 

The poles of the integrand for U are determined by the equation 

shy1 = 0 
We find from this 

yl = ikn 

(6.2) 

(6.3) 

where k is an integer, k = U, 1, 2 ,... . 
Substituting (6.3) into (6.1) we find a series of equations for the determination of P 

(6.4) 

For k = 0 one negative root and a double root at zero are obtained. The latter can 
be eliminated from consideration since the expression (5.4) has no pole for P = 0. 

With the aid of the Hurwitz criterion it is easy to verify that for all other k # 0 all 
the roots of Eqs. (6.4) are located in the left half plane. According to (5.4). the function 

I’, has the same poles as U and, in addition, the two poles p = f ia. Adding the resi- 
dues at the poles indicated, we obtain 

(6.5) u= 2 2er”p2cos(nkx/l) 

h‘, s El (- 1)” (8~” / 8~) lJ’l’ks 

va= 2 
2ePfp2 cos (rckx / 1) 

h‘, ; El (- l)h’(dTZ / ap) (1 + p3 / 3%) 
’ a0 (a, x) sin *t 

y& T 
(6.6) 

where @ (a, X) is given by Eq. (3.3) and the derivative of ~3 is 

w 
ap=E 

P ap+m,l+p L ( p)-l+m(l+$)-a] (6.7) 
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In Eqs. (6.5) and (6.6) the summation is carried out with respect to k, and for each k 
a sum is taken on the roots pbs of the characteristic equation (6.4). 

The expressions (6.5) and (6.6) permit us to draw the following conclusions of a gene- 
ral nature. Inasmuch as all the roots p of the characteristic equations (6.4) are located 

in the left half plane (except for the zero roots, which are of no interest), the sums in the 
expressions for U and VcL involve decaying vibratory solutions. Some time after the appli- 
cation of the impulse these components decay and only the free vibrations of the oscilla- 

tors can be observed (these are determined by the last term in (6.5)). Comparison of 
this term with the expression (3.2) shows that the distribution of amplitudes of vibration 
of the oscillators along the bar coincides, except for a factor, with the distribution of the 
amplitudes of vibration of the points of the load-carrying medium for a steady excitation 
with frequency a. 
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VARIATIONAL FORM OF THE EQUATIONS OF THE THEORY OF 

THERMODIFFUSION PROCESSES IN A DEFORMABLE SOLID 

PMM Vol. 33. W4, 1969, pp. 774-776 
Ia. S. PODSTRIGACH and P. R. SHEVCHUK 

(Lvov) 

The variational equation corresponding to the fundamental equations of thermoelasticity 
has been examined by Biot p. 23, Balabukh and Shapovalov [S], and others [4, 51. Sedov 
[6] and his disciples p. 83 used variational methods to construct new models of continua. 

A variational equation equivalent to the system of governing equations of a model 
-which allows description of the interconnection between the deformation, heat and mat- 

ter diffusion processes, and the most widespread types of boundary conditions, is presented 
herein. 

1. Formulation of the question. Vorlrtional equation of the 
model. A deformed solid representing a two-component solid solution will be 


